Iterative methods for fitting a Gaussian Random Field (GRF) model to spatialdata via maximum likelihood (ML) require $\mathcal{O}(n^3)$ floating pointoperations per iteration, where $n$ denotes the number of data locations. Forlarge data sets, the $\mathcal{O}(n^3)$ complexity per iteration together withthe non-convexity of the ML problem render traditional ML methods inefficientfor GRF fitting. The problem is even more aggravated for anisotropic GRFs wherethe number of covariance function parameters increases with the process domaindimension. In this paper, we propose a new two-step GRF estimation procedurewhen the process is second-order stationary. First, a \emph{convex} likelihoodproblem regularized with a weighted $\ell_1$-norm, utilizing the availabledistance information between observation locations, is solved to fit a sparse\emph{{precision} (inverse covariance) matrix to the observed data using theAlternating Direction Method of Multipliers. Second, the parameters of the GRFspatial covariance function are estimated by solving a least squares problem.Theoretical error bounds for the proposed estimator are provided; moreover,convergence of the estimator is shown as the number of samples per locationincreases. The proposed method is numerically compared with state-of-the-artmethods for big $n$. Data segmentation schemes are implemented to handle largedata sets.
展开▼
机译:通过最大似然(ML)将高斯随机场(GRF)模型拟合到空间数据的迭代方法每次迭代需要$ \ mathcal {O}(n ^ 3)$浮点运算,其中$ n $表示数据位置的数量。对于大型数据集,每次迭代的数学{O}(n ^ 3)$复杂度以及ML问题的非凸性使得传统ML方法对于GRF拟合效率低下。对于各向异性GRF,问题更加严重,因为协方差函数参数的数量随过程域维数的增加而增加。在本文中,当过程为二阶平稳时,我们提出了一种新的两步GRF估计程序。首先,利用观察位置之间的可用距离信息,通过加权的$ \ ell_1 $范数归一化的\ emph {凸}似然问题,使用以下方法求解稀疏\ emph {{precision}(逆协方差)矩阵以拟合观测数据乘数的交替方向法。其次,通过求解最小二乘问题来估计GRF空间协方差函数的参数。为拟议的估计器提供了理论误差界;此外,随着每个位置样本数量的增加,估计量的收敛性也随之显示。将所提出的方法与$ n $的最新方法进行了数值比较。实施数据分段方案以处理大型数据集。
展开▼